
Kosmas Kosmopoulos Application development with XML and Java

Application Development Application Development
with XML and Javawith XML and Java

Lecture 7
XML Parsing

JDOM

Kosmas Kosmopoulos Application development with XML and Java

JDOM OverviewJDOM Overview

• JDOM: Java Package for easily reading
and building XML documents.

• Created by two programmers: Brett
McLaughlin and Jason Hunter.

• Started as an open source project in
2000.

• Started because of programmers’ general
frustration with the regular DOM API
Package.

• From the JDOM Web site:
“Build a better mousetrap and the world

will beat a path to your door.”
-- Emerson

• JDOM Web Site: http://www.jdom.org
• Official JDOM FAQ:

http://www.jdom.org/docs/faq.html

Kosmas Kosmopoulos Application development with XML and Java

JDOM PhilosophyJDOM Philosophy

• JDOM should be straightforward for
Java programmers.

• JDOM should support easy and efficient
document modification.

• JDOM should hide the complexities of
XML wherever possible, while remaining
true to the XML specification.

• JDOM should integrate with DOM and
SAX.

• JDOM should be lightweight and fast.
• JDOM should solve 80% (or more) of

Java/XML problems with 20% (or less)
of the effort

Kosmas Kosmopoulos Application development with XML and Java

JDOM and SunJDOM and Sun

• Sun maintains a process called, “Java
Community Process”

• This enables groups of developers to suggest
new API for the core Java platform.

• To be considered, a new API is given a Java
Specification Request (JSR.)

• JSRs are then reviewed, and are either
accepted into the Java Platform or rejected.

• JDOM has been under consideration as JSR
102.

• Recently, JSR 102 was approved for eventual
inclusion into the core Java platform.

• It is currently unclear which package JDOM
will be included in: the standard kit or the
enterprise kit.

• Either way, JDOM will probably become an
official part of Java.

• JDOM is fast becoming a standard, and has
received widespread support.

Kosmas Kosmopoulos Application development with XML and Java

JDOM v. DOMJDOM v. DOM

• DOM:
– The main issue with the DOM is that it

was defined to be language independent.
– This is generally a good thing, because

you can therefore use the DOM in
multiple languages, e.g. C, C++, Perl,
Java, etc.

– However, it also presents several
problems, including:

• DOM is not optimized for Java, and
• DOM API is very large

• JDOM
– JDOM was designed for Java

optimization.
– Makes it much easier for regular Java

programmers.
– JDOM API is much smaller and more

manageable than the DOM API.

Kosmas Kosmopoulos Application development with XML and Java

JDOM v. DOMJDOM v. DOM

• JDOM
– JDOM was designed for Java

optimization.
– Makes it much easier for regular Java

programmers.
– JDOM API is much smaller and more

manageable than the DOM API.

Kosmas Kosmopoulos Application development with XML and Java

JDOM API OverviewJDOM API Overview

• JDOM has four main packages:
– org.jdom: classes that represent an XML

document and its parts.
– org.jdom.input: classes for reading a

document into memory.
– org.jdom.output: classes for writing a

document to a stream or file.
– org.jdom.adapters: classes for hooking

up to DOM implementations (we are
skipping this package.)

Kosmas Kosmopoulos Application development with XML and Java

JDOM ParsersJDOM Parsers

• JDOM is not actually an XML parser.
• Rather, JDOM is an interface for

manipulating/creating XML documents.
• To work, JDOM needs an XML parser

to do the actual parsing.
• JDOM works with lots of different

parsers:
– Oracle XML Parser
– Sun XML Parser
– etc., etc.

• By default, JDOM will use the Xerces
XML Parser.

• Xerces is automatically bundled with
JDOM, so it works right out of the box.

• All the examples in class assume the
default Xerces parser.

Kosmas Kosmopoulos Application development with XML and Java

Basic ExampleBasic Example

• jdom1.java: works with local files
– Takes an XML file name from the

command line.
– Displays the specified XML file.

• To read in an XML file, use the
org.jdom.input package.

• There are two main options:
– SAXBuilder: uses a SAX parser to build

the document (faster option,
recommended.)

– DOMBuilder: uses a DOM parser to
build the document (slower option, not
recommended.)

Kosmas Kosmopoulos Application development with XML and Java

Using the SAXBuilderUsing the SAXBuilder

• To read in a local file via the
SAXBuilder:

SAXBuilder builder = new
SAXBuilder();

Document doc=builder.build(new
File(fileName));

• Once you have a builder object, call the
build() method, and specify a File
object.

• The build() method will return a
Document object.

• The Document object encapsulates all
data regarding your XML document.

Kosmas Kosmopoulos Application development with XML and Java

XML Output: XML Output:
org.jdom.outputorg.jdom.output

• To output an XML document, use
the org.jdom.output package.

• The main class here is the
XMLOutputter class.

• XMLOutputter is used to easily
output any XML document to the
screen or a specific file.

Kosmas Kosmopoulos Application development with XML and Java

XMLOutputterXMLOutputter

• To output an XML document to
the screen:

XMLOutputter out = new
XMLOutputter ();

out.output (doc,
System.out);

• Here, you are specifying an XML
Document object, and an output
stream.

Kosmas Kosmopoulos Application development with XML and Java

JDOM1 ExampleJDOM1 Example

• To use JDOM1, specify an XML file on the
command line. For example:
java jdom1 document.xml

• Program output:
JDOM1 Example
Downloading file: document.xml
<?xml version="1.0"
encoding="UTF-8"?>

<!DOCTYPE DOCUMENT SYSTEM
"simple.dtd">

<DOCUMENT trackNum="1234"
secLevel="unclassified">

<TITLE>Sample Document</TITLE>
<AUTHOR>
<LASTNAME>Kosmopoulos</LASTNAME>
<COMPANY>City</COMPANY></AUTHOR>
<SUMMARY>This is element text and
an entity follows:This is a
very simple sample
document.

</SUMMARY>
</DOCUMENT>

Kosmas Kosmopoulos Application development with XML and Java

import avail.*;
import org.jdom.*;
import org.jdom.input.SAXBuilder;
import
org.jdom.output.XMLOutputter;
/**
* Basic JDOM Example
* Outputs any local XML file

specified on the command line
* Example usage:
* java jdom1 document.xml
*/

public class jdom1 {
// Download and Output XML File
public void process (String

fileName) {
try {

// Use SAXBuilder
SAXBuilder builder = new

SAXBuilder();
Document doc =

builder.build(new File(fileName));

Kosmas Kosmopoulos Application development with XML and Java

// Use XMLOutputter
XMLOutputter out = new

XMLOutputter ();
out.output (doc, System.out);

} catch (Exception e) {
e.printStackTrace();

}
}
public static void main (String[]

args) {
System.out.println ("JDOM1

Example");
System.out.println

("Downloading file: "+args[0]);
jdom1 app = new jdom1();
app.process(args[0]);

}
}

Kosmas Kosmopoulos Application development with XML and Java

JDOMExceptionJDOMException

• In the event of a well-formedness
error, JDOM will throw a
JDOMException.

• For example, let us parse the XML
document on the next slide…

Kosmas Kosmopoulos Application development with XML and Java

<?xml version="1.0" encoding="UTF-
8"?>
<!DOCTYPE DOCUMENT SYSTEM
"simple.dtd">
<DOCUMENT trackNum="1234">
<TITLE>Sample Document</TITLE>
<AUTHOR>
<FIRSTNAME>Kosmas</FIRSTNAME>
<LASTNAME>Kosmopoulos</LASTNAME>
<COMPANY>City</COMPANY></AUTHOR>
<SUMMARY>This is element text and
an entity follows:
This is a very simple sample
document.
</SUMMARY>

End </DOCUMENT> tag is missing.
Hence, document is not well-formed.

Kosmas Kosmopoulos Application development with XML and Java

WellWell--formedness Errorsformedness Errors

• jdom1 will output the following
error:

JDOM1 Example
Downloading file: document2.xml
org.jdom.JDOMException: Error on

line 10 of document
file:/home1/e/eqc3844/xml/document
2.xml: The element type "DOCUMENT"
must be terminated by the matching
end -tag "</DOCUMENT>".

at
org.jdom.input.SAXBuilder.build(SA
XBuilder.java:296)

at
org.jdom.input.SAXBuilder.build(SA
XBuilder.java:617)

at
org.jdom.input.SAXBuilder.build(SA
XBuilder.java:599)

at
jdom1.process(jdom1.java:20)

at jdom1.main(jdom1.java:34)

Kosmas Kosmopoulos Application development with XML and Java

ValidationValidation

• By default, validation is turned off.
• Hence, by default, errors in validity

are completely ignored.
• To turn validation on, pass true to

the Builder constructor. For
example:

SAXBuilder builder = new SAXBuilder
(true);

• With validation turned on,
validation errors are reported as
JDOMExceptions.

Kosmas Kosmopoulos Application development with XML and Java

JDOM2JDOM2

• JDOM2 turns validation on.
• Errors in well-formedness are

reported as JDOMExceptions.
• Errors in validity are also reported

as JDOMExceptions.
• If no errors occur, program

outputs:
Document is well-formed
Document is valid

Kosmas Kosmopoulos Application development with XML and Java

import avail.*;
import org.jdom.*;
import org.jdom.input.SAXBuilder;
import
org.jdom.output.XMLOutputter;
/**
* Basic JDOM Example
* Outputs any local XML file

specified on the command line
* Performs XML Validation
* Example usage:
* java jdom2 document.xml
*/

public class jdom2 {
// Download and Output XML File
public void process (String

fileName) {

Kosmas Kosmopoulos Application development with XML and Java

try {
// Use SAXBuilder
// turn XML validation on
SAXBuilder builder = new SAXBuilder (true);
Document doc = builder.build(new

File(fileName));
// If we get here without any exceptions,
// the document is both well-formed and valid
System.out.println ("Document is well-

formed");
System.out.println ("Document is valid");

} catch (JDOMException e) {
System.out.println ("JDOM Exception:

"+e.getMessage());
}

}

public static void main (String[] args) {
System.out.println ("JDOM2 Example with

Validation");
System.out.println ("Downloading file:

"+args[0]);
jdom2 app = new jdom2();
app.process(args[0]);

}
}

Kosmas Kosmopoulos Application development with XML and Java

JDOM TreeJDOM Tree

• Every XML document will have a root
element.

• For example, in the following XML
document:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE WEATHER SYSTEM

"Weather.dtd">
<WEATHER>

<CITY NAME="Hong Kong">
<HI>87</HI>
<LOW>78</LOW>

</CITY>
</WEATHER>

• WEATHER is the root element.

Kosmas Kosmopoulos Application development with XML and Java

Working with the Root Working with the Root
NodeNode

• To get the root Element, use the
following code:
SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(new URL(url));
Element root = doc.getRootElement();

• Once you have the root node, you
can walk through the XML tree.

Element Data
• Given any XML element, you can

retrieve the element name or the
embedded text.

• For example:
– element.getName(): Returns name of the

element.
– element.getText(): Returns embedded text.

Kosmas Kosmopoulos Application development with XML and Java

Getting Element ChildrenGetting Element Children

• You can also query an Element for
a list of children.

• For example, given the following
XML:

<CITY NAME="Hong Kong">
<HI>87</HI>
<LOW>78</LOW>

</CITY>

• The CITY element has two
children: HI and LOW.

Kosmas Kosmopoulos Application development with XML and Java

Getting Element ChildrenGetting Element Children

• To get a List of children, call the
getChildren() method.

• Example:
List kids = element.getChildren();

Iterator iterator = kids.iterator();

while (iterator.hasNext()) {

Element kid = (Element) iterator.next();

processElement (kid);

}

• getChildren() returns a Java List
object.

• You can then iterate through the list
of children.

Kosmas Kosmopoulos Application development with XML and Java

Example: jdom3.javaExample: jdom3.java

• jdom3.java downloads an RSS
News File containing top news
stories.

• Once downloaded, the program
“walks” the entire XML tree, and
simply prints out the names of all
elements within the document.

• It also keeps a running count of the
number of elements.

Kosmas Kosmopoulos Application development with XML and Java

Sample Source FileSample Source File

<?xml version="1.0" encoding="iso-8859-
1"?>

<!DOCTYPE moreovernews SYSTEM
"http://p.moreover.com/xml_dtds/moreo
vernews.dtd">
<moreovernews>

<article id="_28421464">

<url>http://c.moreover.com/click/here
.pl?x28421450</url>

<headline_text>NIAID
Establishes Functional Genomic
Research Center</headline_text>

<source>UniSci</source>
<media_type>text</media_type>
<cluster>moreover...</cluster>
<tagline> </tagline>

<document_url>http://unisci.com/</doc
ument_url>

<harvest_time>Dec 1 2001
10:59AM</harvest_time>

<access_registration>
</access_registration>

<access_status>
</access_status>

</article>

Kosmas Kosmopoulos Application development with XML and Java

Sample OutputSample Output

moreovernews
article
url
headline_text
source
media_type
cluster
tagline
document_url
harvest_time
access_registration
access_status
article
url
…

The program
simply outputs
all elements
within the XML
document.

Kosmas Kosmopoulos Application development with XML and Java

import avail.*;
import java.net.*;
import java.util.List;
import java.util.Iterator;
import org.jdom.*;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;
/**
* Basic JDOM Example
* Illustrates how to traverse a JDOM

tree
* Example usage:
* java jdom4
*/

public class jdom4 {
private int numElements = 0;
// Download and Output XML File
public void process (String url)

throws MalformedURLException {

Kosmas Kosmopoulos Application development with XML and Java

try {
// Use SAXBuilder
SAXBuilder builder = new

SAXBuilder();
Document doc = builder.build(new

URL(url));
Element root =

doc.getRootElement();
processElement (root);
System.out.println ("Total

Number of Elements Processed: "
+numElements);

} catch (JDOMException e) {
System.out.println ("JDOM

Exception: "+e.getMessage());
}

}

Kosmas Kosmopoulos Application development with XML and Java

// Recursive Function to Process
Elements

// Prints the Element Name and keeps
a running count

// out total number of elements.
private void processElement (Element

element) {
numElements++;
String elementName =

element.getName();
System.out.println (elementName);
List kids = element.getChildren();
Iterator iterator =

kids.iterator();
while (iterator.hasNext()) {

Element kid = (Element)
iterator.next();

processElement (kid); //
Recursive

}
}

Kosmas Kosmopoulos Application development with XML and Java

public static void main (String[]
args) throws Exception {

System.out.println ("JDOM3
Example");

jdom3 app = new jdom3();
app.process("http://p.moreover.com/cgi
-local/page?"+

"c=Top%20stories&o=xml");
}

}

